Semi-Markov Phrase-Based Monolingual Alignment

نویسندگان

  • Xuchen Yao
  • Benjamin Van Durme
  • Chris Callison-Burch
  • Peter Clark
چکیده

We introduce a novel discriminative model for phrase-based monolingual alignment using a semi-Markov CRF. Our model achieves stateof-the-art alignment accuracy on two phrasebased alignment datasets (RTE and paraphrase), while doing significantly better than other strong baselines in both non-identical alignment and phrase-only alignment. Additional experiments highlight the potential benefit of our alignment model to RTE, paraphrase identification and question answering, where even a naive application of our model’s alignment score approaches the state of the art.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Statistical Machine Translation with Monolingual Collocation

This paper proposes to use monolingual collocations to improve Statistical Machine Translation (SMT). We make use of the collocation probabilities, which are estimated from monolingual corpora, in two aspects, namely improving word alignment for various kinds of SMT systems and improving phrase table for phrase-based SMT. The experimental results show that our method improves the performance of...

متن کامل

Graph-based Semi-Supervised Learning of Translation Models from Monolingual Data

Statistical phrase-based translation learns translation rules from bilingual corpora, and has traditionally only used monolingual evidence to construct features that rescore existing translation candidates. In this work, we present a semi-supervised graph-based approach for generating new translation rules that leverages bilingual and monolingual data. The proposed technique first constructs ph...

متن کامل

Semi-supervised Chinese Word Segmentation based on Bilingual Information

This paper presents a bilingual semisupervised Chinese word segmentation (CWS) method that leverages the natural segmenting information of English sentences. The proposed method involves learning three levels of features, namely, character-level, phrase-level and sentence-level, provided by multiple submodels. We use a sub-model of conditional random fields (CRF) to learn monolingual grammars, ...

متن کامل

Unsupervised Bilingual Morpheme Segmentation and Alignment with Context-rich Hidden Semi-Markov Models

This paper describes an unsupervised dynamic graphical model for morphological segmentation and bilingual morpheme alignment for statistical machine translation. The model extends Hidden Semi-Markov chain models by using factored output nodes and special structures for its conditional probability distributions. It relies on morpho-syntactic and lexical source-side information (part-of-speech, m...

متن کامل

Monolingual Phrase Alignment on Parse Forests

We propose an efficient method to conduct phrase alignment on parse forests for paraphrase detection. Unlike previous studies, our method identifies syntactic paraphrases under linguistically motivated grammar. In addition, it allows phrases to non-compositionally align to handle paraphrases with non-homographic phrase correspondences. A dataset that provides gold parse trees and their phrase a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013